Incremental Shape Statistics Learning for Prostate Tracking in TRUS
نویسندگان
چکیده
Automatic delineation of the prostate boundary in transrectal ultrasound (TRUS) can play a key role in image-guided prostate intervention. However, it is a very challenging task for several reasons, especially due to the large variation of the prostate shape from the base to the apex. To deal with the problem, a new method for incrementally learning the patient-specific local shape statistics is proposed in this paper to help achieve robust and accurate boundary delineation over the entire prostate gland. The proposed method is fast and memory efficient in that new shapes can be merged into the shape statistics without recomputing using all the training shapes, which makes it suitable for use in real-time interventional applications. In our work, the learned shape statistics is incorporated into a modified sequential inference model for tracking the prostate boundary. Experimental results show that the proposed method is more robust and accurate than the active shape model using global population-based shape statistics in delineating the prostate boundary in TRUS.
منابع مشابه
Segmenting TRUS Video Sequences Using Local Shape Statistics
Automatic segmentation of the prostate in transrectal ultrasound (TRUS) may improve the fusion of TRUS with magnetic resonance imaging (MRI) for TRUS/MRI-guided prostate biopsy and local therapy. It is very challenging to segment the prostate in TRUS images, especially for the base and apex of the prostate due to the large shape variation and low signal-to-noise ratio. To successfully segment t...
متن کاملRobust Image Segmentation applied to Magnetic Resonance and Ultrasound Images of the Prostate
Prostate segmentation in trans rectal ultrasound (TRUS) and magnetic resonance images (MRI) facilitates volume estimation, multi-modal image registration, surgical planing and image guided prostate biopsies. The objective of this thesis is to develop shape and region prior deformable models for accurate, robust and computationally efficient prostate segmentation in TRUS and MRI images. Primary ...
متن کاملRobust Image Segmentation Applied to Magnetic Resonance and Ultrasound Images of the Prostate Soumya
Prostate segmentation in trans rectal ultrasound (TRUS) and magnetic resonance images (MRI) facilitates volume estimation, multi-modal image registration, surgical planing and image guided prostate biopsies. The objective of this thesis is to develop shape and region prior deformable models for accurate, robust and computationally efficient prostate segmentation in TRUS and MRI images. Primary ...
متن کاملIntegrated US-MR fusion images and MR targeted biopsies. What are their role and value in the detection and follow-up of prostate cancer.
Accuracy of multiparametric MRI has greatly improved the ability of localizing tumor foci of prostate cancer. This property can be used to perform a TRUS-MR image registration, new technological advance, which allows for an overlay of an MRI onto a TRUS image to target a prostate biopsy toward a suspicious area Three types of registration have been developed: cognitive-based, sensor-based, and ...
متن کاملRotationally resliced 3D prostate TRUS segmentation using convex optimization with shape priors.
PURPOSE Efficient and accurate segmentations of 3D end-firing transrectal ultrasound (TRUS) images play an important role in planning of 3D TRUS guided prostate biopsy. However, poor image quality of the input 3D TRUS images, such as strong imaging artifacts and speckles, often makes it a challenging task to extract the prostate boundaries accurately and efficiently. METHODS In this paper, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 13 Pt 2 شماره
صفحات -
تاریخ انتشار 2010